
Ruby on Rails 4
Web development workshop

Rick Pannen, Consulting & Development [pannen@gmail.com]

mailto:pannen@gmail.com
mailto:pannen@gmail.com

The history of
Ruby

• A scripting language like perl
or python

• Developed by Yukihiro „Matz“
Matsumoto in Japan

• The first version (0.95) was
released in 1995

Ruby interpreter

• MRI (Matz's Ruby Interpreter) - Reference
implementation in C

• JRuby - Java implementation

• Rubinius - Ruby implementation in Ruby
(uses LLVM)

• ...many more

Managing multiple
Ruby interpreters

• Use rvm (Ruby Version Manager) on Linux
and MacOs http://rvm.io

• Pik does the same for windows

http://rvm.io/
http://rvm.io/

Ruby features

• Everything is an object

• Built after the "Principle of Least Surprise"

• Encourages duck typing

• Metaprogramming, DSLs

Ruby code
conventions

Constants begin with an uppercase letter.
Constant vars are uppercase by convention.

Class names are CamelCase by convention

class MySuperClass

PI = 3.141592653589793238462643

Everything else is lowercase and underscored
my_favorite_variable = 42

Ruby syntax:
As simple as possible

Commands end with semicolon or whitespace:

or:

puts "Hello"; puts "World"

puts "Hello"
puts "World"

possible, but not used:
puts "Hello";
puts "World";

Ruby syntax:
Variable declaration

my_variable = "A string"
my_array = [1, 7, "Some text"]
my_hash = {:one => "Eins", :two => "Zwei"}

':one' is called a symbol - That is commonly
used as a key in hashes.

Because of that a short form of the last
statement has been introduced in Ruby 1.9

my_hash = {one: "Eins", two: "Zwei"}

Ruby:
Control structures

If - elsif - else:
if a == 1
 "One"
elseif a == 2
 "Two"
else
 "Three"
end

Ruby:
Keep it readable

Don't do this

do this:

unless a == b

if !(a == b)

on-line conditions:

puts "Hello" if write_hello
puts "World" unless no_world

Ruby:
Functions / Methods

Declaration:

def say_my_name
 "Rick"
end

The implicit return value is the last evaluated
value. Just use 'return' explicitly if you need to.

Ruby: Method
name conventions

Methods that return a boolean value are
suffixed with a question mark:

Methods that modify the object they are called
on are suffixed with an exclamation mark:
my_string = "Hello"
my_string.reverse!
puts my_string
=> olleH

"Hello".start_with? "Hell"
=> true

Ruby: Classes

Declaration:
class Duck
 def speak(name)
 "Quak! " + name
 end
end
Inheritance:
class Duckling < Duck
end

Ruby:
Class instantiation

Create a new duck object:

my_duck = Duck.new

Call a method on the object:

my_duck.speak "Quack"

You don't need any brackets for the
parameters as long as the meaning of the code
is not ambiguous like this:

my_duck.speak("Quack").downcase

http://www.dict.cc/englisch-deutsch/ambiguity.html
http://www.dict.cc/englisch-deutsch/ambiguity.html

Ruby:
Instance & class variables

Declaration
class Duck
 # Class variable
 @@species = "Bird"

 # Instance variable
 def initialize(name)
 @name = name
 end

end

Ruby:
Attribute accessors

Class and instance variables are private to the
class. You need to write getters and setters to
access them.
class Duck
 [...]
 def name
 @name
 end

end

Ruby:
Attribute the easy way
Writing setters and getters for all attributes
would be boring so there's a simpler way:

class Duck
 # This creates getters
attr_reader :color, :gender

 # This creates setters
attr_writer :weight, :size
This creates getters and setters
attr_accessor :name, :location

end

Ruby: Modules
Modules are mixins that extend classes
module Named
 attr_writer :first, :last
 def full_name
 @first + " " + @last
 end
end
Use it in a class:
class User
 include Named
end

Ruby: Blocks
Blocks have the following syntax:
my_array = [1, 2, 3, 4]

my_array.each do |n|
 puts n * 2
end

The part in orange is a block. That is a piece of
code that is passed to the method 'each' of the
array 'my_array'. That method calls the code
for every member of the array.

Ruby: Gems

• Gems are packaged programs and libraries
for ruby

• You can install them with the "gem"
commandline tool

• Type "gem install twitter" on your virtual
machine to try it out

Ruby: Tutorials

http://rubymonk.com has some excellent
tutorials for all skill levels.

http://rubymonk.com
http://rubymonk.com

Ruby: Questions?

• Questions

• 15 minute break

• Next up: Rails workshop

Ruby on Rails

• Model View Controller framework

• Version 1.0 was released in 2005

• 4.0, the current version, was released in
June 2013

Rails: Principles

• Don’t repeat yourself

• Convention over configuration

Rails: Workshop

• Switching to terminal & editor

